

Maths

Maths Calculation

Policy

Petersham
Updated: February 2016

About Our Calculation Policy

This documents is written for all adults working with our pupils; including teachers, teaching assistants, students, supply teachers and parents. It should be part of an induction package for all staff with inset as appropriate.

Our Calculation Policy has been devised to meet the requirements of the National Curriculum 2014, but most importantly the learning needs of our children at the Russell. The policy has been designed to give pupils a consistent and smooth progression of learning calculations across the school. Teachers should refer to this policy in all planning for calculations including cross curricular links.

The calculation policy is organised according to the requirements that need to be embedded in each year group of the primary curriculum as set out in the National Curriculum 2014; one set of mathematical concepts and big ideas for all. One of our fundamental mathematical Key principles; that this policy has been derived from, is the assumption that children use the language of maths correctly, so that children can develop mathematical concepts and also allows teachers to address misconceptions early and ensure that children have a firm understanding of key mathematical concepts before moving on.

It is vital that children are taught according to the 'stage' that they are working at, the transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time. Throughout this policy stages have been developed which introduces new concepts, outlines appropriate manipulatives and visual models, and what mathematical language is involved for a particular concept. Latter stages are for those children who are showing to have 'mastered' a concept, allowing them to apply their learning in a real life context further deepening their understanding. The new curriculum focuses on skills and mastery and is not about moving children on to the next method as soon as they can do the one before.

Written methods of calculations are based on mental strategies that have been taught using appropriate manipulatives and are only expected once a child has a clear understanding of the processes involved. This policy uses pictorial models that are consistent across year groups which means that skills can be taught, practised and reviewed constantly. These skills lead to more formal written methods of calculation.

Strategies for calculation need to be supported by familiar models and methods to reinforce understanding, such as the whole part model which children are exposed to throughout this policy. The written methods in this document are important but they by no means replace the superb mental methods we have developed. It is important for children to handle manipulatives to develop and reinforce understanding at all stages from Foundation to Year Six. A sound understanding of the number system and the value of a given number (place value) is essential for children to carry out calculations efficiently and accurately. Efficiency in calculation requires having a variety of mental strategies, which are carefully taught at a particular stage in a child's learning. Another key principle is the importance of 10 , referred to as 'magic 10 ' (NCETM, 2015), which allows children to partition numbers to bridge 10 , for example $9+6=9+1+5=15$, which is helpful to make 10 as this makes this calculation easier.

Children need to be taught and encouraged to communicate their reasoning and thinking at all stages. Confidence in their ability in mathematics and calculations should be encouraged and supported with all children, fostering a 'can do' attitude. The long term aim is for our children to be able to select an efficient method of their own choice asking systematically:

Can I do this in my head?
Can I do this using drawings or jottings?
Do I need to use a pencil and paper procedure?
What resources could I use to help me?

A Malin

January 2016

Year Two

Children in Year Two will begin to record addition and subtraction in columns developing their understanding of place value which prepares for formal written methods with larger numbers.
Children will continue to partition numbers in different ways for example 23=20+3 and 23=10+13 using the whole part model, understand 0 as a place holder and be able to read and write numbers to at least 100 in numbers and in words. Using resources they will make connections between the $2 s, 5 s$ and $10 s$ multiplication tables and will learn to use repeated addition to find the multiples of the 3 times table.
By the end of Year Two, children should be able to fluently recall the $2 s, 5 s$ and $10 s$ multiplication tables and use this knowledge to count divisions on a clock face, recognise odd and even numbers, tell the time at intervals of 5 minutes, including quarter past/to and draw hands on a clock face to show these times as well as know the number of minutes in an hour and the hours in a day.

Key Vocabulary: addition, plus, subtraction, take away, difference, partition, tens, ones, whole, parts, value, greater than, smaller than, multiplication, lots of, array, groups of, equal parts, division, shared, array, number line, money, value, coin, notes, change

Key Instant Recall Facts

Autumn 1: I know number bonds for each number to 20.
Autumn 2: I know the multiplication and division facts for the 2 times table.
Spring 1: I know doubles and halves of numbers to 20.
Spring 2: I know the multiplication and division facts for the 10 times table.
Summer 1: I can tell the time.
Summer 2: I know the multiplication and division facts for the 5 times table.

Number- Number and place value

Count in steps of 2,3 and 5 from 0 , and in tens from any number, forward and backward.
Stage 1 (adding or subtracting ten to/from any given number)

Use Numicon alongside base 10 to develop understanding of mathematical language.
\square

$$
\begin{array}{ll}
15+10=25 & 10+15=25 \\
25-10=15 & 25-15=10
\end{array}
$$

When you subtract or add ten to a number the ones part stays the same.

Stage 2 (adding or subtracting ten to any given two digit number)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Use hundred square alongside a numberline to develop mental imagery of process.
Record using number equation:

$$
15+10=25
$$

Stage 1 (adding or subtracting in steps of 2,3 or 5 to/from any given number)

I have 28 apples and I bought 5 more, how many will I have altogether?

Use base 10 alongside Numicon to develop understanding of mathematical language.
Record using a number equation.

Stage 2

Use a number line to develop mathematical reasoning.

Record using a number equation.
$17-6=11$

Recognise the place value of each digit in a two-digit number (tens, ones).

Identify, represent and estimate numbers using different representations, including the number line.

Use Numicon alongside base 10 to develop understanding of mathematical
language.
Record using whole part model:

Stage 2

Use partition arrow cards alongside a balance scale to develop number sense.

Record number equation:

$$
28=20+8
$$

Stage 3

Use a number line alongside a beadstring to develop understanding of number value and also developing awareness of where a given number lays in the number system.

Record using number equation:

$$
20+8=28
$$

Stage 4

Use number line to develop awareness of where a given number is placed in the number system.

Stage 1

Use Base 10 alongside a balance scale to develop understanding of number value.

Equality frame showing $5>2,5=5$ and $2<5$.

Stage 2

more than

Use equality frames to develop understanding of inequality ($\langle>$) and equality ($=$) and to continue to develop mathematical reasoning.

Record using a number equation:
$28<57$ OR 2 tens and 8 ones < 5 tens and 7 ones
$57>27$ OR 5 tens and 7 ones >2 tens and 7 ones

Number- addition and subtraction

Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts to 100. E.g ($3+7=10,10-7=3$ and $7=10-3$ to calculate $30+70=100,100-70=30$ and $70=100-30$)
Use concrete objects and pictorial representations, including those involving number, quantities and measures.
Use place value and number facts to solve problems.
Recognise and use inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.

Use a bar model alongside a number line to explore addition and subtraction facts developing mathematical reasoning.

Record as a fact family:

$$
\begin{aligned}
& 60+30=90 \\
& 30+60=90
\end{aligned}
$$

$$
90-60=30
$$

$$
90-30=60
$$

Addition (The process of finding the total of two or more sets)

Phase 1- Adding a two digit number and ones

Use base 10 to develop understanding of mathematical language.
Record using whole part model.

Note: It is important that children count on to the nearest ten further developing their knowledge of making 10 and then count on the remainder.

Use a number line to support mathematical process.
Record using a number equation:

$$
\begin{array}{r}
39+4=39+1+3 \\
40+3=43
\end{array}
$$

Stage 3

whole

39
part
part
Use a bar model to support mathematical reasoning.

Record as a fact family:

$$
4+39=43 \quad 39+4=43
$$

$$
43-4=39 \quad 43-39=4
$$

Phase 2- Adding a two digit number and tens (Ensuring that the tens do not cross the tens boundary)
 begin to lay base 10 in a column format when adding ten to a given number.

Use base 10 to develop understanding of mathematical language.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Stage 2

Use a blank number line alongside a number square to support mathematical process.

Stage 3

Use a bar model to support mathematical reasoning.

Record as a fact family:

Record using a number equation:

$$
39+20=59 \quad 20+39=59
$$

$$
39+20=59
$$

$$
59-39=20 \quad 59-20=39
$$

Phase 3 (When ones do not bridge 10)-Adding 2 two-digit numbers (Ensuring that the tens do not cross the tens boundary)
 digit numbers.

Use base 10 to develop understanding of mathematical language.

Stage 2

Use a blank number line to support mathematical process.

Record using a number equation:
$31+16=31+10+6$
$41+6=47$

Use partition arrow cards to support mathematical process.

Record using partitioned column method:

$$
\begin{gathered}
31+16=47 \\
6+1=7 \\
\frac{30+10=40}{40+7}
\end{gathered}
$$

$$
=47
$$

Use a bar model to support
mathematical reasoning.
Record as a fact family:

$$
\begin{array}{ll}
31+16=47 & 16+31=47 \\
47-16=31 & 47-31=16
\end{array}
$$

Phase 4 (When ones bridge 10) -Adding 2 two-digit numbers (Ensuring that the tens do not cross the tens boundary)

Use base 10 to develop understanding of mathematical language.

Use a blank number line to support mathematical process.

Record using a number equation:
$39+16=39+10+6$
$49+6=55$

Use partition arrow cards to support mathematical process.

Record using partitioned column method: $39+16=55$
$9+6=15=10+5$ further partition the ones to make it easier for mental addition. $30+10=40$ $40+10+5=55$

Stage 4
whole

Use a bar model to suppor \dagger mathematical reasoning.

Record as a fact family:
$39+16=55 \quad 16+39=55$
$55-16=39$ 55-39=16

Subtraction-calculating the difference (The process of taking away and counting how many are left)

Use base 10 to develop understanding of mathematical language.

Use a blank number line to support mathematical process.
Record using a number equation:

$$
39-4=35
$$

Record using whole part model.

Stage 3

whole
39 35 35
part
part
Use a bar model to support mathematical reasoning.

Record as a fact family:
$39-4=35 \quad 39-35=4$
$4+35=39 \quad 35+4=39$

Phase 2- Subtracting a two digit number and tens

Record using whole part model.
Use base 10 to develop understanding of mathematical language.

Stage 2

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Use a blank number line alongside a number square to support mathematical process.

Record using a number equation:

$$
39-20=19
$$

Stage 3

Use a bar model to support mathematical reasoning.

Record as a subtraction fact family:

$$
39-19=20 \quad 39-20=19
$$

$$
20+19=3919+20=39
$$

Record using whole part model.
Stage 2

Use partition arrow cards to support mathematical process.
Record using partitioned column method:

$$
\begin{aligned}
& 47-23=\ldots \\
& 7-3=4 \\
& \frac{40-20=20}{20+4}
\end{aligned}
$$

Note: Children to
subtract ones first and then tens.

Use a bar model to support mathematical reasoning.
Record as a fact family:
$47-23=24 \quad 47-24=23$
$=24$
$24+23=47 \quad 23+24=47$

Use base 10 to develop understanding of mathematical language.

Number- multiplication and division

Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in a context.
Show that multiplication of two numbers can be done in any order (commutative) and division of one number cannot.
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (() and equals ($=$) signs.

Multiplication

Use a number line to jump on in equal amounts (repeated addition) to develop mathematical process.

Record using equation:
$4 \times 5=20$

Use an array alongside a beadstring to support mathematical process.

Record using an equation:
$5 \times 4=4+4+4+4+4=20$
$4 \times 5=5+5+5+5=\underline{20}$

Record array using a trio alongside a bar model to support mathematical reasoning.
Record as a multiplication fact family:

$$
4 \times 5=20 \quad 5 \times 4=20
$$

Use a hundred square to investigate place value and number patterns developing children's mathematical reasoning.

Counting on in 25										Counting on in 5 s										Counting on in 10s									
1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30	21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	41	42	43	44	45	46	47	48	49	50	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60	51	52	53	54	55	56	57	58	59	60	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	61	62	63	64	65	66	67	68	69	70	61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80	71	72	73	74	75	76	77	78	79	80	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	86	87	88	89	90	81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98/	99	100	91	92	93	94	95	96	97	98	99	100	91	92	93	94	95	96	97	98	99	100

Use a number line to support mathematical process and support problem solving.

If I had 10 2ps how much money would I have altogether?

Fractions

Recognise, find, name and write fractions $1 / 2,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity. Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.

Use a bar model to develop mathematical process and reasoning.
Record as a fraction.
Use a bar model to develop mathematical reasoning.

Record as a fraction equation.
$1 / 3$ is greater than $1 / 4$.

Measurements

Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make particular amounts.
Find different combinations of coins that equal the same amount of money.

Use money hands visual for coins up to 10p alongside adapted Numicon tiles to develop understanding of coin value and support finding equivalent values.

Record using an equation:

$$
\begin{aligned}
& 4 p=2 p+2 p \\
& 4 p=2 p+1 p+1 p \\
& 4 p=1 p+1 p+1 p+1 p
\end{aligned}
$$

Stage 3

Using base 10 to develop understanding of monetary value and equivalance to further develop mathematical reasoning and language.

Use a bar model alongside base 10 to develop mathematical reasoning.

