

Maths

Maths Calculation

Policy

Petersham
Updated: February 2016

About Our Calculation Policy

This documents is written for all adults working with our pupils; including teachers, teaching assistants, students, supply teachers and parents. It should be part of an induction package for all staff with inset as appropriate.

Our Calculation Policy has been devised to meet the requirements of the National Curriculum 2014, but most importantly the learning needs of our children at the Russell. The policy has been designed to give pupils a consistent and smooth progression of learning calculations across the school. Teachers should refer to this policy in all planning for calculations including cross curricular links.

The calculation policy is organised according to the requirements that need to be embedded in each year group of the primary curriculum as set out in the National Curriculum 2014; one set of mathematical concepts and big ideas for all. One of our fundamental mathematical Key principles; that this policy has been derived from, is the assumption that children use the language of maths correctly, so that children can develop mathematical concepts and also allows teachers to address misconceptions early and ensure that children have a firm understanding of key mathematical concepts before moving on.

It is vital that children are taught according to the 'stage' that they are working at, the transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time. Throughout this policy stages have been developed which introduces new concepts, outlines appropriate manipulatives and visual models, and what mathematical language is involved for a particular concept. Latter stages are for those children who are showing to have 'mastered' a concept, allowing them to apply their learning in a real life context further deepening their understanding. The new curriculum focuses on skills and mastery and is not about moving children on to the next method as soon as they can do the one before.

Written methods of calculations are based on mental strategies that have been taught using appropriate manipulatives and are only expected once a child has a clear understanding of the processes involved. This policy uses pictorial models that are consistent across year groups which means that skills can be taught, practised and reviewed constantly. These skills lead to more formal written methods of calculation.

Strategies for calculation need to be supported by familiar models and methods to reinforce understanding, such as the whole part model which children are exposed to throughout this policy. The written methods in this document are important but they by no means replace the superb mental methods we have developed. It is important for children to handle manipulatives to develop and reinforce understanding at all stages from Foundation to Year Six. A sound understanding of the number system and the value of a given number (place value) is essential for children to carry out calculations efficiently and accurately. Efficiency in calculation requires having a variety of mental strategies, which are carefully taught at a particular stage in a child's learning. Another key principle is the importance of 10 , referred to as 'magic 10 ' (NCETM, 2015), which allows children to partition numbers to bridge 10 , for example $9+6=9+1+5=15$, which is helpful to make 10 as this makes this calculation easier.

Children need to be taught and encouraged to communicate their reasoning and thinking at all stages. Confidence in their ability in mathematics and calculations should be encouraged and supported with all children, fostering a 'can do' attitude. The long term aim is for our children to be able to select an efficient method of their own choice asking systematically:

Can I do this in my head?
Can I do this using drawings or jottings?
Do I need to use a pencil and paper procedure?
What resources could I use to help me?

A Malin

January 2016

Year Six

Children in Year Six use their knowledge of the order of operations to carry out calculations involving the four operations and they continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency. Pupils begin to extend their knowledge of the number system to include the decimal numbers and fractions that they have met so far and they should understand that there have been different ways to write whole numbers, for example Roman numerals, and that the important concepts of zero and place value were introduced over a period of time.
By the end of Year Six, children should be confident to connect estimation and rounding numbers to the use of measuring instruments and can recall multiplication facts and the related division fluently when solving a given problem, for example $600 \div 3=200$ can be derived from $2 \times 3=6$. Children should be confident in using a range of mental and formal methods of recording and apply when solving mathematical problems.

Key Vocabulary: portioned, value, whole part model, negative numbers, decimal, operation, inverse, fact family, addition, subtraction, multiplication, division, array, bar model, compact method, expanded method, exchanging, regrouping, decimal point, whole number, fraction, brackets, laws of distribution, common factor, multiple, prime number, composite number, remainder, percentages, decimal, denominator, numerator.

Key Instant Recall Facts

Autumn 1: I know the multiplication and division facts for all times tables up to 12×12.
Autumn 2: I can identify common factors of a pair of numbers.
Spring 1: I can convert between decimals, fractions and percentages.
Spring 2: I can identify prime numbers up to 50.

Number- Number and place value

Read, write, order and compare numbers up to 10000000 and determine the value of each digit.
Round any whole number to a required degree of accuracy.
Use negative numbers in context, and calculate intervals across zero. Solve number and practical problems that involve all of the above.

Stage 1- Whole Numbers

Millions place	Handreds of Thousand place	Tens of Thassonds place	Thousands place	Hundreds place	Tens place	Ones place
1000000						

Use a partitioning grid alongside place value cards to develop mathematical understanding and language.
Record using whole part model alongside a bar model:

Stage 2-Decimal Values

Hundreds	Tens	Ones	Tenths	Hundredths
		3	0	4
0	2	7	5	
	4	3	1	1
5	6	0	3	

Use a decimal grid with a fixed decimal point alongside a place value grid to support mathematical process and continue to develop mathematical understanding of place value in a context, such as money or measure.

Stage 3- Negative Numbers

Number- Addition, subtraction, multiplication and division (including decimals)

Perform mental calculations, including with mixed operations and large numbers.
Use their knowledge of the order of operations to carry out calculations involving the four operations.
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why we use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Use their knowledge of the order of operations to carry out calculations involving the four operations.
Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places

Addition (The process of finding the total of two or more sets)

Phase 1- Adding several numbers with more than four digits (also in the context of measure, capacity and money)

Stage 1

(Place value grid showing: $52,323+3,668+15,201+20,551$)
Use place value grid to develop understanding of mathematical process and language.

Record using compact column addition, children to use whole part model when partitioning to continue to develop mathematical understanding of place value.

Note: Children should be taught to estimate equation first using rounding to nearest 10/100.
E.g: $52,000+3,700+15,200+20,600=91,500$

Phase 2-Adding several numbers with different numbers of decimal places (also in the context of measure, capacity and money)

Stage 1

Hundreds	Tens	Ones	Tenths	Hundredths
	1	9	\ddots	1
	3	6	\bullet	5
		0	0	0

Use a decimal grid with a fixed decimal point alongside a place value grid to support mathematical process and continue to develop mathematical understanding of place value.

Children should be taught that the decimal point is fixed and that tenths, hundredths and thousandths should be correctly aligned vertically.

Children should also be taught that zeros could be added into empty decimal places, to show that there is no value to add.

Record using compact column addition with a fixed decimal point, children to use whole part model when partitioning to continue to develop mathematical understanding of place value.

Note: Children should be taught to partition using their knowledge of place value to support mental addition using whole part model.
Firstly, converting all mixed units of measure (cm and mm) to the same unit of measure (cm)
EG: $19 \mathrm{~cm} 1 \mathrm{~mm}=191 \mathrm{~mm}$
$3.65 \mathrm{~cm}=36.5 \mathrm{~mm}$
$0.7 \mathrm{~mm}=0.07 \mathrm{~cm}$

Now, add whole, tenths, hundredths and thousandths parts to find the total.

$$
19+36+0=55
$$

$$
19.1+36.5+0.07=0.1+0.5+0.0=\underline{0.6} \quad=55+0.6+0.07=\underline{\underline{55.67}}
$$

$$
0.00+0.00+0.07=0.07
$$

Subtraction- calculating the difference (The process of taking away and counting how many are left)

Phase 1- Subtracting several numbers with more than four digits (also in the context of measure, capacity and money)

Stage 1

Use place value grid to develop understanding of mathematical process and language.

Record using compact column method.
Stage 2

Develop mathematical reasoning using bar model.
Whole (c)

	0	14	9	1			
	$\mathbf{1}$	5	θ	6	9	9	
\sim		8	9	9	4	9	
	0	6	0,	7	5	0	

part (b)
Record as a fact family.

$$
89,949+60,750=150,699 \quad 60,750+89,949=150,699
$$

$$
150,699-89,949=60,750 \quad 150,699-60,750=89,949
$$

This can also be generalised as: $a+b=c \quad b+a=c \quad c-b=a \quad c+b=a$ Phase 2-Subtracting several numbers with different numbers of decimal places (also in the context of measure, capacity and money)
 place value in each column.

Children should be encouraged to estimate the answer first using their knowledge of place value to partition each value.

A shop ordered 25 boxes of toys, each box had 135 toys inside. How many toys were there altogether?

Phase 1-Multiply up to a four digit number by a two digit number (also in the context of measure and money)
Stage 2-Moving onto more complex numbers.

Stage 1- Introducing long multiplication

$18 \times 13=234$		
x	10	3
10^{*}	100	30
8	\star	80
	$180+$	24

Use grid method alongside place value counters to develop mathematical understanding.
Record using long multiplication method:

Note: Children to compare grid method to long multiplication method to develop understanding.
18×3 on the first row.
($8 \times 3=24$, carrying the 2 for twenty, then 1×3).
18×10 on the second row. Put a zero in the ones column to acknowledge the place holder.

$$
135 \times 25=3375
$$

x	20	5
100	2000	500
30^{*}	600	150
5	100	25
	$2700+$	675

Use grid method alongside place value counters to develop mathematical understanding.

Record using long multiplication method:

Note: Children to compare grid method to long multiplication method to develop understanding.
135×5 on the first row.
($5 \times 5=25$, carrying the 2 for twenty, then $5 \times 30=150+20=170$. Carrying the 1 for one hundred, then,
$5 \times 100=500+100=600$
135×20 on the second row. Put a zero in the ones column to acknowledge the place holder.
Multiply one-digit numbers with up to two decimal places by whole numbers.

Use written division methods in cases where the answer has up to two decimal places.

Phase 2- Multiply a one-digit number with up to two decimal places by a whole number (also in the context of measure and money).

Note: Children should understand that the single digit whole number (8)
belongs in the ones column.

Use place value grid to develop understanding of mathematical process and language.

3	.	1	9	x	8	$=$	2	5	.	5	2			
		0	.	0	9	x	8	$=$			0	.	7	2
		0	.	1	0	x	8	$=$			0	.	8	0
		3	.	0	0	x	8	$=$	+	2	4	.	0	0
										2	5	.	5	2
											1			

Record using expanded column method.

Identify the value of each digit in numbers given to three decimal places and multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places.

Pupils explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$. Children are introduced to law of distribution: 'BODMAS'

B Brackets firs \dagger

o Orders (i.e. Powers and Square Roots,
etc.)
DM Division and Multiplication (left-to-right)
AS Addition and Subtraction (left-to-right)

Divide and Multiply rank equally (and go left to right).
Add and Subtract rank equally (and go left to right).

Example: How do you work out $3+6 \times 2$
Multiplication before Addition
First $6 \times 2=12$, then $3+12=15$

Example: How do you work out $(3+6) \times 2$?
Brackets first:
First $(3+6)=9$, then $9 \times 2=18$
xample: How do you work out $12 / 6 \times 3 / 2$?
Multiplication and Division rank equally, so just $g o$ left to right
First $12 / 6=2$, then $2 \times 3=6$, then $6 / 2=3$

1. 2. 3.4.

80

After you have done " B " and " O ", just go from left to right doing any "D" or " M " as you find them.

Then go from left to right doing any " A " or " S " as you find them.

E.g without brackets	E.g with brackets	E.g of developing reasoning skills	E.g of developing problem solving
$3+4 \times 5=3+20=23$	$(3+4) \times 5=7 \times 5=35$		Put brackets to make the correct answer: $21-12 \div 3=21-4=17$
$15-6+5=9+5=14$	$15-(6+5)=15-11=4$	$40 \div 5 \times 4=2$	
$7+5-16-9=-13$	$(7+5)-(16-9)=12-7=5$	$(7+5)-(9-16)=12-(-7)=12+7=19$	$(7+(\square-9)=12-7=5$
$7+5-9-16=-13$		A farmer had 34 animals, 16 of them cows. He sold half the cows at the market and then gave 5 cows to his brother. How many animals does he have now?	
$34-16 \div 2-5=21$			

Identify common factors, common multiples and prime numbers.

When some numbers have the same factor, that factor is called a Common Factor.

Example: Find all the common factors of 12 and 30.

Factors of 12 are 1,2,3,4,6,12.
Factors of 30 are $1,2,3,5,6,10,15,30$.

The common factors of 12 and 30 are 1,2,3 and 6.
*When you multiply a given whole number by any other number, the result is a Multiple of that number.

Examples

-The first 3 multiples of 9 . Solution: $9 \times 1=9,9 \times 2=18,9 \times 3=27$. -All multiples of 3 greater than 10 but smaller than 20 . Solution:
$3,6,9,12,15,18,21,24 \ldots$ The desired ones are $12,15,18$.
*The common multiples of two numbers are multiples of both numbers.

Example: Common multiples of 4 and 5 .
Solution: Multiples of 4 are: $4,8,12,16,20,24,28,32,36,40 \ldots$
Multiples of 5 are: $5,10,15,20,25,30,35,40 \ldots$.
Common multiples of 4 and 5 are 20,40...
*A Prime Number has exactly 2 factors, the number itself and 1. In other words, the prime number can be divided only by 1 and by itself.
Note: 0 and 1 are not prime numbers.

Examples

-5 is a prime number, because the only factors it has are 1 and 5.
-Find all the prime numbers of 30 .
Solution:
All the factors of 30 are $1,2,3,5,6,10,15,30$
But only 5,3 and 2 are prime numbers.
So, all prime factors of 30 are 2,3 and 5.
*A Composite Number has at least one more factor than the number itself or 1.
*In fact, all whole numbers that are not prime are composite except for 1 and 0 , which are not prime and not composite.

Division

Note: When calculating a decimal remainder children should express them as a fraction, decimal or use rounding depending on the problem.

Phase 1- Divide at least a four digit number by a one digit number (also in the context of measure and money).

Use place value counters to develop understanding of mathematical process and language.

1. Create the dividend using place value counters.

Quotient
A number that is the result obtained by dividing one quantity by another.
2. Group the 1000 s counters according to the divisor and write the number of groups above the line in the thousands column.

3. Next, group the 100s counters according to the divisor and write the number of groups above the line in the hundreds column.

4. Now, group the 10 s counters according to the divisor and write the number of groups above the line in the tens column.

5. Finally, group the 1 s counters according to the divisor and write the number of groups above the line in the ones column. Express the remainders as 'r2' as part of the quotient.

Interpret remainders according to the context (eg money).
Using above example, show remainder as a decimal rounded to the nearest penny.

$$
\operatorname{Eg}: \frac{9635}{3}(3 \longdiv { 9 6 3 5 })=3211 r 2
$$

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

Phase 2- Divide at least a four digit number by a two digit number (also in the context of measure and money).

Adam had $£ 2678$ and shared it between 15 of his friends. How much money did they each get?

Stage 1- Division using formal method of Long Division
(Dividing by a 2 digit number)
Note: $2 \div 15=0$ (Record 0)
$26 \div 15=1$ + remainder (Record 1)

To find remainder 26-15 lot of 15)=11

Now, bring down 7
117 $\div 15=7$ + remainder (Record 7)

To find remainder 117-105 (7 lots of 15)=12

Now, bring down 8

2	6	7	8	\div	1	5	$=$	1	7	8	$r 8$
		0	1	7	8	$r 8$					15
1	5	2	6	7	8	4					30
	\sim	1	5	\downarrow							
		1	1	7							65
	\sim	1	0	5	\downarrow						75
		0	1	2	8						90
	\sim		1	2	0						105
		0	0	8						120	

$128 \div 15=8+$ remainder
(Record 8)
To find remainder 128-120
(8 lots of 15) $=8$

Note: Useful list:
Children should make a list of multiples for the divisor ($\times 15$ table) to ease calculation.

Stage 2- Introduce Long Division by Chunking

(Dividing by a 2 digit number)

Teach children to subtract chunks of divisor (Eg.36), until zero is reached or until there is a remainder.

How many lots of 36 are in 972?
Using multiplication facts in the useful list: 20 lots of 36 $=720$ (Double 10x $=360=720$)
Remaining 252.

A	n	s	w	e	r	$:$		f	2	7	
				2	7			$1 x=$	36		
	3	6	9	7	2			$2 x=$	72		
		\sim	7	2	0	$20 x$		$10 x=$	360	$5 x=$	180
			2	5	2			$100 x=$	3600	$50 x=$	1800
		\sim	2	5	2	$7 x$					
			0	0	0						

How many lots of 36 are in 252?
Using multiplication facts in the useful list: 7 lots of 36 $=252((5 x=180)+(2 x=72)=252)$ Remaining 0 .

Note: Useful list:
Children should make a list of multiplication facts for the divisor (36) to ease calculation.

Number - fractions (including decimals and percentages)

Compare and order fractions, including fractions >1.
Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.
Multiply simple pairs of proper fractions, writing the answer in its simplest form.
David and Adam made 2 pizzas. David ate $\frac{2}{5}$ of his pizza and Adam ate $\frac{4}{5}$ of his pizza. How much pizza did they eat between them?
Stage 1- Comparing, adding and subtracting fractions that have

Use a bar model alongside an array to support mathematical understanding.
Record as fraction equation.

$$
\frac{2}{5}+\frac{4}{5}=\frac{6}{5}
$$

Stage 2- Converting improper fractions to mixed numbers

Note: We know that ther are two pizzas and ten parts. Between Adam and David they ate 6 parts, hence why 6 parts have been shaded.

Use a bar model alongside an array to support mathematical understanding.
Record as fraction equation.

$$
\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}
$$

Stage 3- Adding or subtracting fractions involving different denominators (Using concept of equivalent fractions)

Multiplying fractions involving different denominators.

Note:
Looking at the denominators of both fractions create an array, as if they were whole numbers.

Now, shade in how many parts- looking at the numerator of both fractions.

Calculate the whole 6×3 (total area of the array).

Note: Children should be taught to simplify the fraction to its lowest form.

Solve problems which require answers to be rounded to specified degrees of accuracy.
Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8]. Solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison.

Divide proper fractions by whole numbers [for example, $1 / 3 \div 2=1 / 6$]

Use a bar model to pictorially represent a problem

$1 / 3$	$1 / 3$	$1 / 3$

The whole has been divided into 3 , each part represents $1 / 3$ of the whole.

| $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ | $1 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | A $1 / 3$ of the bar model has been divided into half, which now represents $1 / 6$ of the whole.

$$
\frac{1}{3} \div 2=\frac{1}{6}
$$

1											
$\frac{1}{2}$						$\frac{1}{2}$					
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$		
$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$	8	,	$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$
$\frac{1}{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$		$\frac{1}{6}$	
$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	12	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$
$\frac{1}{5}$		$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$			$\frac{1}{5}$	
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{0}$	1	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	0		$\frac{1}{10}$	$\frac{1}{10}$

You can make equivalent fractions by multiplying or dividing the numerator and denominator by the same number.

$$
\frac{1}{3} \quad \frac{2}{6} \quad \frac{4}{12} \quad \frac{8}{24} \frac{x^{2}}{4} \quad \frac{16}{48}
$$

Ratio and proportion

Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts. Solve problems involving similar shapes where the scale factor is known or can be found.
Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

The 7 parts represent the whole amount of children $=63$
** $63 \div 7=9$
** Each part is worth 9 children.
Girls $=4$ lots of $9(4 \times 9=36)$
**There are 36 girls at the dance.

